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Abstract

Inspired by expert evaluation policy for urban perception, we proposed a novel inverse re-
inforcement learning (IRL) based framework for predicting urban safety and recovering the
corresponding reward function. We also presented a scalable state representation method
to model the prediction problem as a Markov decision process (MDP) and use reinforce-
ment learning (RL) to solve the problem. Additionally, we built a dataset called SmallCity
based on the crowdsourcing method to conduct the research. As far as we know, this is the
first time the IRL approach has been introduced to the urban safety perception and plan-
ning field to help experts quantitatively analyze perceptual features. Our results showed
that IRL has promising prospects in this field. We will later open-source the crowdsourcing
data collection site and the model proposed in this paper.

Keywords: inverse reinforcement learning; urban perception; crowdsourcing

1. Introduction

Urban vitality is receiving increasing attention. As the gathering place for residents to
live, the street view profoundly affects the physical and mental health of residents in urban
activities Cheng et al. (2017). In developed countries, the visual perception of streets
receives considerable attention in the urban planning and construction field Ozkan (2014).
More specifically, the residents’ perceptions about the safety of the urban scene will influence
city layout, as it is a prerequisite for happiness, health, and high quality of life Troy et al.
(2012). The visual perceptions of urban spaces affect the psychological states of their
inhabitants and can induce adverse social outcomes Porzi et al. (2015).

With the development of street view technology Runge et al. (2016) and machine learn-
ing (ML), experts have started to use large-scale data for urban safety perception anal-
ysis Dubey et al. (2016); Keizer et al. (2008). Street view images have become essential
supporting data for research Cheng et al. (2017). Salesses et al. (2013) first proposed that
visual attributes of street view can affect safety perception. They also stated that online
street view images could be used to create reproducible quantitative measures of urban
perception and the inequality of different cities. Subsequent work has investigated urban
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safety perception using support vector regression Naik et al. (2014), deep convolutional
neural networks Dubey et al. (2016), or multi-instance regression Liu et al. (2017). Cheng
et al. (2017); Quercia et al. (2014) proposed visual features which affect safety perception.

Most of the current research on urban safety perception uses visual features and designs
algorithms to obtain the safety level of the street view Dubey et al. (2016); Naik et al. (2014)
and its impact on perception Zhou et al. (2021). However, most of these methods rely on
large-scale data with annotations. In addition, they lack interpretability in quantifying the
impact of features on urban safety perception Zhou et al. (2021). Still, no systematic and
comprehensive model based on visual-semantic features Frome et al. (2013); Karpathy and
Fei-Fei (2015) is available.

To solve the above problems, we introduce decision-making Mnih et al. (2015); You
et al. (2019) to the field of urban perception for the first time. Specifically, we introduced
the Markov decision process (MDP) to model the interaction between the “expert” and
the street view images. Then, we use RL methods to solve the MDP problem and obtain
the optimal policy. The agent is assumed to be a decision-maker who interacts with the
environment. It receives a reward and a representation of the environment’s state at each
time step and exerts an action, i.e., the safety evaluation on the environment You et al.
(2019). The reward function is crucial for most RL applications as it can provide a guideline
for optimization. However, current RL-based methods rely on manually-defined reward
functions, which cannot adapt to dynamic and noisy environments. Besides, they generally
use task-specific reward functions that sacrifice generalization ability Chen et al. (2021).

IRL algorithms can address these problems by learning to imitate the prediction policy
produced by an “expert” Yang et al. (2020); Baee et al. (2021). IRL is an advanced form
of imitation learning Wulfmeier et al. (2015) that enables a learning agent to acquire skills
from expert demonstrations. This way, the reward function and optimal urban safety per-
ception prediction policy can be obtained. In this paper, our framework obtains rich visual
semantic information (environment) by perceptually resolving scenes and proposes a novel
state representation method B-VCB. With the help of street view image input, objective
safety annotations Liu et al. (2017), and B-VCB, this framework improves the accuracy
and applicability of urban safety perception prediction. Besides, after obtaining the reward
function, we can quantitatively analyze the effect of each visual feature.

Additionally, we introduce SmallCity, a new dataset used in our study. This dataset
should be helpful for urban planners, economists, and social scientists looking to analyze
urban perception’s social and economic consequences Naik et al. (2014).

Our contributions can be summarized as follows:

1) We propose a novel framework that applies maximum entropy deep inverse reinforce-
ment learning (MEDIRL) for predicting urban safety perception and recovering the
reward function (Fig. 1).

2) We present a scalable state representation method to represent the visual features.

3) We build the SmallCity dataset to investigate the factors influencing safety perception
and their effects.



Evaluating the Perceived Safety of Urban City via MEDIRL

Figure 1: Given a street view image and corresponding objective safety indicator inputs,
our framework learns to model the prediction policy as states and actions (St, At). Then
we recover the reward function using inverse reinforcement learning and solve the MDP
problem by reinforcement learning.

2. Related work

2.1. Urban Safety Prediction

With easy access to large-scale annotated street view datasets and advanced data-driven
ML methods, the prediction of urban safety perception has received significant interest
Porzi et al. (2015); Dubey et al. (2016); Liu et al. (2017); Zhou et al. (2021).

Previous studies Naik et al. (2014); Arietta et al. (2014) applied support vector regres-
sion to predict the safety of the street view based on selected features. Researchers also
studied the use of CNN to predict the safety of the street view by analyzing image charac-
teristics Dubey et al. (2016); Liu et al. (2017). Conversely, fewer works tried to propose a
computational model for explaining visual patterns associated with safety perception. Porzi
et al. (2015) presented an approach for predicting the safety of images using CNN. It could
automatically discover mid-level visual features correlated with urban perception. More
recently, some works explored the relationship between visual semantic features and the
occurrence of criminal activities in the context of urban perception Jing et al. (2021); Zhou
et al. (2021).

The above studies of urban safety perception are based on crowdsourcing annotations or
data from the government’s criminal records. These methods require a large-scale dataset
to obtain precise predictions, mainly rely on feature selection and lack semantic level inter-
pretability Naik et al. (2014); Dubey et al. (2016). More importantly, the crowdsourcing
annotations have unavoidable noise and cannot fully represent the actual perception.

We are interested in simulating the experts’ decision-making process using crucial visual
semantic features to obtain a safe evaluation policy for street view images. A quantitative
analysis of the impact of images’ visual features is possible based on the evaluation results.
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2.2. Inverse Reinforcement Learning

Our IRL approach follows the methods in which problems are modeled as a sequential
decision process to solve Yang et al. (2020); Baee et al. (2021). Classical IRL considers
expert demonstrations, i.e., a finite set of trajectories and knowledge of the environment to
find the expert’s potential reward function Arora and Doshi (2021). Some IRL algorithms
Wulfmeier et al. (2015); Yang et al. (2020) learned an optimal policy and the corresponding
reward function simultaneously. The research concentrated on the planning problem of
autonomous vehicles in traffic You et al. (2019) is closest to our research as it proposed a
Single-Step Joint MEDIRL. However, our method does not need to generate demonstrations
through RL and learn the corresponding policy. Instead, we use crowdsourcing to collect the
images and safety annotations as demonstrations and recover the intrinsic reward functions
Zheng et al. (2018) induced by experts’ evaluation strategies. We used the MEDIRL method
You et al. (2019) that can take the raw image as inputs and enables the model to handle
experts’ sub-optimal policies and seemingly stochastic behaviors to achieve our goal.

2.3. Street View Dataset

Crowdsourcing websites have been used to collect large-scale data Quercia et al. (2014).
The website designed in Salesses et al. (2013) used questions (e.g., “Which place looks
safer?”) and images from Google Street View to obtain comparison pairs. Furthermore,
the safety score of each image will be calculated using TrueSkill Herbrich et al. (2006) or
RSS-CNN Dubey et al. (2016).

We followed Salesses et al. (2013) to design our website (Fig. 2) and build the dataset
used in research based on Dujiangyan City’s street view.

Figure 2: The website used to get pairwise comparisons of urban safety perception (a). The
relative safety score of each image obtained using TrueSkill (range between [0,1]) (b).
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3. The SmallCity Dataset

We proposed the SmallCity dataset, which consists of 522 geographically averaged street
view images of Dujiangyan City. Each of these images has corresponding semantic features
(e.g., FOV), perceptual features (e.g., visual entropy), quantitative features (e.g., number of
cars or pedestrians), and corresponding objective safety perception annotation. Our study
considers the safety annotation as experts’ predictions.

3.1. Obtaining street view images

45,412 images and corresponding latitude-longitude data were initially obtained using the
Baidu Map API. To reflect the overall appearance of Dujiangyan City, 522 geographically
averaged images were used to build the SmallCity dataset.

3.2. Crowdsourcing Website

Following Salesses et al. (2013), we designed a website (Fig. 2) to collect pairwise compar-
isons. Our website presents two images randomly to obtain comparison pairs, which is more
acceptable and accurate when getting safety scores Porzi et al. (2015); Stewart et al. (2005);
Bijmolt and Wedel (1995). To be more specific, we showed users a randomly-chosen pair
of images side by side and asked them to choose one in response to the question: “Which
place can give you a safer impression?”. Information such as the user’s age, gender,
and the location was also collected. It is worth noting that there is no significant cultural
bias in individual preferences for urban appearance.

3.3. Image Feature Encoder

Unlike most previous studies that focused on the general image features Naik et al. (2014);
Dubey et al. (2016), we addressed the semantic visual features Shen et al. (2017). We applied
the SOTA semantic segmentation model SegFormer Xie et al. (2021) on the SmallCity
dataset and obtained inference results, i.e., the semantic results, which show approximate
contours of each object that appeared on the image. The cover ratio of each feature, i.e.,
FOV Cheng et al. (2017), can be calculated.

The definition of street view variables for state representation is shown in Table 1. Here
we used greenery Cheng et al. (2017) to represent the vegetation and terrain. We selected
variables that significantly impact perception to investigate urban safety perception based
on previous qualitative studies Zhang et al. (2018). Considering Zhou et al. (2021) indicates
that wire poles make notably significant and negative impacts on the occurrence of criminal
activities, we used the binary value to represent the existence of wire poles. The definitions
of our street view variables are shown in Table 1.

Additionally, using TrueSkill, we obtained the relative ranking of each image. Further-
more, we calculated the average of the ranking scores and used them as the threshold in
combination with expert ratings to derive the objective safety annotations.
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Table 1: Specific definitions of street view variables.

street view Variables Definitions

Greenery The cover ratio of terrain and vegetation elements in the field
of view

Sky The cover ratio of sky element in the field of view
Wall The cover ratio of wall element in the field of view
Fence The cover ratio of fence element in the field of view

Sidewalk The cover ratio of sidewalk element in the field of view
Electrical Wire The value of this feature is “1” if the wire pole element is in

the field of view and ”0” otherwise
Visual Entropy Measure the amount of information within an image and the

sensitivity of the human visual system to the image Cheng
et al. (2017)

Car Number The number of cars in the street view

4. Method

We first modeled the urban safety perception prediction problem as an MDP process Bell-
man (1957). Then we proposed an IRL framework (Fig. 1) to model experts’ decision process
of prediction to obtain the reward function and learn a prediction policy from demonstrated
behaviors, i.e., the crowdsourcing annotations.

Targets performing the safety perception task can be considered goal-directed agents,
with the predictions being a sequential decision process. At each time step, the agent
attends to receive a random street view image and approximates the state based on the
corresponding MDP process. The images were represented using B-VCB proposed in this
paper (Sec. 4.1). Also, each agent’s action depends on the state at the specific time step
during the decision process. The agent’s goal is to maximize the rewards obtained. While
it is difficult to measure how much reward is received from these predictions behaviorally,
with IRL, the reward can be assumed to be a function of the state and the action. This
function can be jointly learned using the MEDIRL method (Sec. 4.2). We can also get the
learned expert-like policy.

4.1. State Representation Modeling

To model the state of an agent, we propose a novel state representation method called
Binary Visual-Contextual-Belief (B-VCB).

Contextual belief Yang et al. (2020). It represents a person’s gross “what” and
“where” understanding of a scene. It means we can assume people have an internal scene
parser that takes an image input and generates belief maps based on all the objects and
background classes in that person’s knowledge structure when evaluating an image. Dif-
ferent from Yang et al. (2020), to capture more useful perceptual features and form better
beliefs, we use SegFormer for image segmentation and select specific visual features, as
mentioned in 3.3.
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Binary representation Considering the impact of features on safety perception tends
to be linear and monotonic Zhou et al. (2021), and the value ranges of different features are
different, we use the threshold segmentation method to divide those greater than and those
less than the threshold value into two different states, i.e., 0 or 1. The threshold value is
the average of the current feature. Furthermore, ”1” and ”0” respectively mean the feature
represents an unsafer or safer factor.

Following You et al. (2019), 256 states can be obtained through the MDP process, and
each state s is represented as a state vector F of a binary set. It is worth mentioning that
more corresponding classes can be obtained when needed besides the street view variables
used in our research. For instance, other variables such as Salient Region Saturation Cheng
et al. (2017), traffic lights Zhou et al. (2021), and the number of people can be considered.

Figure 3: Example of inference results of the SmallCity dataset

4.2. Reward and Policy Learning

We use MEDIRL to learn the reward function and urban safety perception prediction poli-
cies in a small dataset. MEDIRL assumes the reward is a function of the state and the
action, and this reward function can be jointly learned using the imitation policy Baee et al.
(2021).

MDP Notations In our work, S is a set of possible states; A is a set of available
actions, which is given by A = {“safe”, “unsafe”}; F is the set of the visual features for a
state; τ is the set of images and corresponding demonstrations. Specifically, we use Single-
Step Joint MEDIRL You et al. (2019) to recover the unknown reward function R from the
set of demonstrations Γτ =

{
ξiτ , i = 1, ..., Nτ

}
, which is generated using the crowdsourcing

method, and obtain the optimal policy. The element ξiτ = {(si, ai)} satisfies the following
conditions: (1) ξiτ starts at the state τ ∈ S (2) The length of ξiτ is constant 4T for all
τ ∈ S (Here we have 4T = 1), and (3) There exists a path ζ ∈ D such that ξiτ ⊆ ζ. The
corresponding path space for is denoted as Ωτ . We then maximized the entropy of the joint
distribution over all Ωτ subject to the constraints from the demonstrations Γτ following
You et al. (2019).

Reward Function To obtain the prediction policy, we need to reproduce the agent’s
preference for specific actions when facing different states. Thus we chose the state-action-
reward R : S×A→ R Levine and Koltun (2012), which takes the action into consideration.

A widely used approach to design the reward function is to represent it as a linear
combination of some manually chosen features Ziebart et al. (2008); Levine and Koltun
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(2012); Yang et al. (2020); Baee et al. (2021).

R (s, a) = ωTΦ (s, a) (1)

In our work, we use a deep neural network (DNN) that can approximate any function
as a parameterized reward function Wulfmeier et al. (2015) (Fig. 4). These features only
depend on the current state s, which the feature vector F can represent. Note that the
weight vectors of ω and the parameter vector θ are both associated with the network, which
is fine-tuned through training.

R (ω, θ; s, a) = ωTΦ (θ; s, a) (2)

Policy Learning To learn the prediction policies, Single-Step Joint MEDIRL maxi-
mizes the joint posterior distribution of demonstrations Γτ , under a given reward structure
and of the model parameter, ω and θ. It corresponds to maximizing the following objective
function:

LD(ω,θ) =
1

N

∑
ξ∈I

logP (ξ | ω, θ)

where the probability of a demonstration ξiτ , P (ξ|ω, θ) is calculated following Theorem 4.1
in Ziebart et al. (2008). We can also obtain the loss gradient and maximum-entropy gradient
You et al. (2019):

∂LD(ω,θ)

∂θ
=
∑
sεS

∑
aεA

∂LD(ω,θ)

∂R (ω, θ; s, a)

∂R (ω, θ; s, a)

∂θ
(3)

where ∂R(ω,θ;s,a)
∂θ can be obtained by backward propagation and

∂LD(ω,θ)

∂R(ω,θ;s,a) is the maximum-
entropy gradient:

∂LD(ω,θ)

∂R (ω, θ; s, a)
= µD (s, a)− E [µ (s, a)] (4)

where µD (s, a) is the expected empirical state–action pair visitation counts over the demon-
strations Γτ , and E [µ (s, a)] is the expected state–action pair visitation counts calculated
over 4T steps. In our work, we let 4T = 1 and consider only the one-step action case, so
we have:

∂LD(ω,θ)

∂R (ω, θ; s, a)
= πD (s, a)− π (s, a) (5)

where πD (s, a) is the expected empirical policy and π (s, a) is the learned policy.
The IRL method aims to optimize 3 and get the weights ω, θ of the reward function.

After obtaining the reward of an “expert,” we then use reinforcement learning techniques
to solve our MDP problem to get the optimal policy π∗ (s, a).

5. Experiments

5.1. Implementation Details

Feature Encoding. To encode visual information (Sec. 3), we used several semantic seg-
mentation models: PSPNet Zhao et al. (2017), DeepLab V3+ Chen et al. (2018), Segmenter
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Figure 4: Recovering reward functions using DNN. Note that the number of layers and
neurons in the hidden layer is adjustable. The DNN produces the rewards considering every
action in action set A. One then just needs to select the correct output channel according
to the current action at.

Strudel et al. (2021) and SegFormer. After comparing the results of these methods, we ap-
plied SegFormer in our research (Fig. 3) and calculated the FOV of the selected features.
Then we encode each image into a state vector F .

Reward Representation We only used the state st as the input of the DNN and
provided the rewards for taking every action in action set A. The state vector Ft contains
the visual information for urban safety perception. Hence, the DNN requires eight input
channels to receive the eight-dimensional state st. The DNN requires two output channels
since there are two actions in A. We define a DNN with the numbers of the neurons in
each layer given by [8, 32, 16, 32, 2], which are hyperparameters. We used Tanh instead of
Sigmoid because it is unbiased at origin and has a more extensive range.

Policy Learning We used OpenAI Gym to implement our environment and Ray RLlib
to implement the RL algorithms: PPO Schulman et al. (2017), SAC Haarnoja et al. (2018),
and D3QN Van Hasselt et al. (2016); Wang et al. (2016).

Evaluation Metrics We used learned behavior accuracy to evaluate the IRL module
for reward function recovery Arora and Doshi (2021). To evaluate urban safety percep-
tion predictions, we used F1-Score and Area under the ROC curve (AUC) to measure the
accuracy of the policy.

5.2. Results and Discussion

We compare the proposed framework with traditional ML and deep learning (DL) methods.
For ML methods, we applied SVM Steinwart and Christmann (2008) by using the street
view variables selected to evaluate the safety perception. While for the DL approach, we
used fully connected neural networks (FCNNs) to obtain predictions based on variables. We
also used ResNet-101 He et al. (2016) and ViT Dosovitskiy et al. (2020) for safety perception
evaluation based on the street view images. Since these methods are typical algorithms for
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Table 2: Evaluation of performances on SmallCity.

Method F1-Score (%) AUC

SVM 61.9% 0.610
FCN 61.4% 0.628

ResNet-101 53.9% 0.532
ViT 66.7% 0.618

Ours 69.3% 0.709

Table 3: Performance comparison of urban perceived safety prediction on SmallCity using
different RL methods and different reward functions.

Method Learned Behavior Accuracy(%)

IRL + PPO 63.6
IRL + SAC 70.5

IRL + D3QN 71.9
Expert Reward + D3QN 68.5

solving this problem and the models are accessible, they are used as experimental compar-
isons.

Table 2 provides the quantitative evaluation results of our framework and shows that
our IRL+RL framework outperforms other methods on the SmallCity dataset in terms of
the F1-Score and AUC. Most significantly, our approach can effectively predict urban safety
perception. It demonstrates that our method is advantageous for accurately anticipating if
a street view image is safe or not. ViT’s result being 3% lower than ours in terms of the F1-
Score is the inherent problem of supervised learning, which lacks high-level interpretability.
The poorer result of ResNet-101 is related to the overfitting problem. IRL+D3QN achieves
the best performance in our study, as shown in Table 2. IRL+SAC and IRL+D3QN, which
used IRL to recover reward functions, achieved higher learned behavior accuracy than the
method using an expert-designed function. The results demonstrate the effectiveness of the
IRL method.

Table 3 shows the comparison of different RL algorithms when solving the MDP prob-
lem. We also compared the IRL recovered reward function with the expert design reward
function.

We calculated the “total expert rewards” encountered when traversing trajectories gen-
erated using policies under IRL learned reward or expert reward for evaluation, as shown in
Fig.5 (a). That means we use IRL learned and expert rewards separately during training.
In the evaluation, we only used the expert reward metric to address the problem of the value
range. We carefully compared the results of IRL and expert reward functions on the same
image. Different reward function assigns each feature a score. It shows that IRL recovered
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(a) Total expert rewards in the training process. (b) The reward value of each feature on one image.

Figure 5: The reward curves during learning process under different reward functions (a).
The reward value of recovered reward (IRL) and expert reward corresponds to each feature
(b).

reward function can provide better training signals than supervised learning and achieve
the increasing reward.

When designing the reward function, the experts analyzed the selected features and
determined threshold values of “reward” or “penalty.” Each expert also gave each image a
final prediction result, i.e., safe or unsafe. We obtained the expert reward by considering the
experts’ evaluation strategy. Fig.5 (b) shows reward values of each feature when the image’s
predictions are consistent with the label, i.e., safe. The expert-designed reward function is
based on empirical evidence, while the recovered reward function is more consistent with the
crowdsourcing annotations. The former is a simple function, while the latter is a multilayer
neural network. Therefore, the learned reward function gives some features a different
interpretation from the expert reward.

5.3. Ablation Study

We use the IRL method to recover the reward function and mimic the human intrinsic
perception patterns. More specifically, for a decision pair, we can obtain the reward function
value of the decision behavior, demonstrating the degree of fitting the expert evaluation
strategy. A more considerable reward value means making the judgment for one picture
more constant with the expert’s evaluation strategies. By changing the value of each feature
dimension (e.g., by setting the value of uninteresting features to 0), we can focus on certain
street-level features and learn the relationship between the input features and the safety
perception by the recovered reward function.

In Table 4, we report the results of ablation studies with the SmallCity dataset. The
first row shows the complete B-VCB + IRL + D3QN method results. In the second row, we
remove the visual feature Greenery in B-VCB and keep other conditions unchanged. Other
rows have declined on the three evaluation metrics compared with our full model(the first
row). It proves the effectiveness of our B-VCB method.
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Table 4: Ablation study of the proposed state representation method Binary Visual-
Contextual-Belief.

B-VCB Settings F1-Score (%) AUC Acc (%)

B-VCB full 69.3% 0.700 71.9%
B-VCB w/o Greenery 61.6% 0.632 63.3%

B-VCB w/o Car Number 66.5% 0.662 66.1%
B-VCB w/o Electrical Wire 68.4% 0.687 69.1%

Our IRL method is more effective than conventional supervised learning because of the
combination of B-VCB and IRL. The B-VCB method can simulate the evaluation pattern
of experts and extract perceptual features, which are more robust and targeted. Also, the
recovered reward function can provide more training signals in obtaining the optimal policy.
Our framework can get a policy more similar to experts’ patterns.

6. Conclusions

We proposed a novel IRL-based framework for predicting the perceptual safety of street view
images in urban perception situations. We also presented a new state representation method
of street view images. Our framework effectively recovers the reward function and learns
the optimal policies for safety perception; based on this, an urban planner can learn the
impact of different semantic visual features on perceptual safety from the reward function.
To facilitate our study, we built the SmallCity dataset. We investigate the effectiveness of
our method through experimental evaluation of different methods based on the SmallCity.
Results show that our method outperforms existing models and indicate that the IRL
method has promising prospects in related fields.
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